◆新書介紹
◆圖書分類
◆進階查詢
◆特價書區
◆教師服務
◆會員專區
◆購物車
◆討論區
◆網站連結

美國地址驗證
貨物追蹤

SSL 交易安全聲明


MATHEMATICS FOR MACHINE LEARNING 2020 (P)

△看放大圖
ISBN: 9781108455145
類別: 電腦Computer Science & Engineering
出版社: CAMBRIDGE UNIVERSITY PRESS
作者: DEISENROTH
年份: 2020
裝訂別: 平裝
頁數: 398
定價: 1,480
售價: 1,332
原幣價: USD 46.99
狀態: 正常
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

> A one-stop presentation of all the mathematical background needed for machine learning
> Worked examples make it easier to understand the theory and build both practical experience and intuition
> Explains central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines

Table of Contents

1. Introduction and motivation
2. Linear algebra
3. Analytic geometry
4. Matrix decompositions
5. Vector calculus
6. Probability and distribution
7. Optimization
8. When models meet data
9. Linear regression
10. Dimensionality reduction with principal component analysis
11. Density estimation with Gaussian mixture models
12. Classification with support vector machines.
Springer 國外現貨
帳號:
密碼:
 

    

 

 

 
科大文化事業股份有限公司 SCI-TECH Publishing Company Ltd.
221 新北市汐止區新台五路一段99號11樓之8
TEL: 886-2-26971353 FAX: 886-2-26971631
Copyright © 2004 SCI-TECH All Rights Reserved.
訪客人數:2995023